Semantic Graph for Zero-Shot Learning

نویسندگان

  • Zhen-Yong Fu
  • Tao Xiang
  • Shaogang Gong
چکیده

Zero-shot learning aims to classify visual objects without any training data via knowledge transfer between seen and unseen classes. This is typically achieved by exploring a semantic embedding space where the seen and unseen classes can be related. Previous works differ in what embedding space is used and how different classes and a test image can be related. In this paper, we utilize the annotationfree semantic word space for the former and focus on solving the latter issue of modeling relatedness. Specifically, in contrast to previous work which ignores the semantic relationships between seen classes and focus merely on those between seen and unseen classes, in this paper a novel approach based on a semantic graph is proposed to represent the relationships between all the seen and unseen class in a semantic word space. Based on this semantic graph, we design a special absorbing Markov chain process, in which each unseen class is viewed as an absorbing state. After incorporating one test image into the semantic graph, the absorbing probabilities from the test data to each unseen class can be effectively computed; and zero-shot classification can be achieved by finding the class label with the highest absorbing probability. The proposed model has a closed-form solution which is linear with respect to the number of test images. We demonstrate the effectiveness and computational efficiency of the proposed method over the state-of-the-arts on the AwA (animals with attributes) dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LONG, LIU, SHAO: ATTRIBUTE EMBEDDING WITH VSAR FOR ZERO-SHOT LEARNING 1 Attribute Embedding with Visual-Semantic Ambiguity Removal for Zero-shot Learning

Conventional zero-shot learning (ZSL) methods recognise an unseen instance by projecting its visual features to a semantic space that is shared by both seen and unseen categories. However, we observe that such a one-way paradigm suffers from the visualsemantic ambiguity problem. Namely, the semantic concepts (e.g. attributes) cannot explicitly correspond to visual patterns, and vice versa. Such...

متن کامل

Zero-Shot Fine-Grained Classification by Deep Feature Learning with Semantics

Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task due to two main issues: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e. ...

متن کامل

Zero-Shot Learning and Clustering for Semantic Utterance Classification

We propose two novel zero-shot learning methods for semantic utterance classification (SUC) using deep learning. Both approaches rely on learning deep semantic embeddings from a large amount of Query Click Log data obtained from a search engine. Traditional semantic utterance classification systems require large amounts of labelled data, whereas our proposed methods make use of the structure of...

متن کامل

Zero-Shot Learning on Semantic Class Prototype Graph.

Zero-Shot Learning (ZSL) for visual recognition is typically achieved by exploiting a semantic embedding space. In such a space, both seen and unseen class labels as well as image features can be embedded so that the similarity among them can be measured directly. In this work, we consider that the key to effective ZSL is to compute an optimal distance metric in the semantic embedding space. Ex...

متن کامل

Transductive Multi-label Zero-shot Learning

Zero-shot learning has received increasing interest as a means to alleviate the often prohibitive expense of annotating training data for large scale recognition problems. These methods have achieved great success via learning intermediate semantic representations in the form of attributes and more recently, semantic word vectors. However, they have thus far been constrained to the single-label...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1406.4112  شماره 

صفحات  -

تاریخ انتشار 2014